The Crystal and Molecular Structures of 2,4-Diphenyl-2,3-benzodiazocin-1(2H)-one and 3a,8b-Dihydro-1,3-diphenylindeno[1,2-c]pyrazol-4(1H)-one

By R.L.Harlow and S. H. Simonsen
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, U.S.A.

(Received 22 December 1975; accepted 4 February 1976)

Abstract

The molecular structures of 2,4-diphenyl-2,3-benzodiazocin-1 $2 H$-one, compound I , and $3 \mathrm{a}, 8 \mathrm{~b}$ -dihydro-1,3-diphenylindeno[1,2-c]pyrazol-4($1 H$)-one, compound II, have been determined by X-ray single-crystal diffraction methods. Compound II is a chemical isomer of compound I and is produced by thermal rearrangement of (I). Experimental details for compound I: triclinic, space group $P \overline{1}$, $Z=2 ; a=9.753$ (2), $b=11 \cdot 116$ (4), $c=9.202$ (2) $\AA, \alpha=113 \cdot 12$ (2), $\beta=103.23(2), \gamma=102 \cdot 07$ (2) ${ }^{\circ}$, at $-40^{\circ} \mathrm{C}$; 2959 reflections [$I>2 \sigma(I)$], ω-scans, Syntex diffractometer; full-matrix least-squares refinement of all atoms, $R=0.039$. For compound II [where different from (I)]: monoclinic, space group $P 2_{1} / c, Z=4$; $a=11.017$ (3), $b=9.386$ (2), $c=16 \cdot 222$ (2) $\AA, \beta=107 \cdot 18$ (1) ${ }^{\circ}$, at $-40^{\circ} \mathrm{C}$; 1379 reflections; $R=0.048$. Both molecules exist as discrete units. Compound I assumes the 'tub' conformation (no extensive π conjugation; crystals are colorless) with a very short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular distance, $2.23 \AA$. Compound II is found to have extensive π delocalization (crystals are greenish-yellow) within the $\mathrm{Ph}-\mathrm{C}=\mathrm{N}-\mathrm{N}-\mathrm{Ph}$ moiety.

Introduction

The crystal-structure determination of a synthesis product was undertaken in order to confirm the analysis of what was believed to be compound III (Katritzky, 1975). The actual structure was shown to be compound I, 2,4-diphenyl-2,3-benzodiazocin-1(2H)one. Furthermore, during recrystallization of the material by sublimation at $140^{\circ} \mathrm{C}$, two crystalline forms were noted: long, colorless needles which were shown to be compound I and greenish-yellow prisms. It was thought that perhaps the greenish-yellow crystals were compound III, formed from (I) by ring-closure and a phenyl shift. However, a crystal-structure analysis revealed them to be compound II, 3a, 8 b -dihydro- 1,3 -diphenylindeno[1,2-c]pyrazol-4(1 H)-one. The chemistry and preliminary structural information were communicated previously (Dennis, Katritzky, Lunt, Ramaiah, Harlow \& Simonsen, 1976).

(I)

(II)

(III)

Experimental, structure solution and refinement

Crystals of compound I were supplied by A. R. Katritzky; crystals of compound II were grown by sublimation of (I) at a temperature of approximately $200^{\circ} \mathrm{C}$. At this higher temperature (higher than the $140^{\circ} \mathrm{C}$ mentioned above), compound II is the sole product. Preliminary unit-cell parameters and spacegroup information were obtained from oscillation and Weissenberg photographs. All further work was carried out on a Syntex $P 2_{1}$ diffractometer with the crystal

Table 1. Experimental summary for compounds I and II

(a) Crystal data	Compound I	Compound II
Formula	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	$324 \cdot 38$	$324 \cdot 38$
Crystal system	Triclinic	Monoclinic
Space group, Z	$P \overline{1}, 2$	$P 2_{1} / \mathrm{c}, 4$
Unit-cell parameters at $-40^{\circ} \mathrm{C}$, Mo $K \alpha(\lambda=0.71069 \AA$), refined by the least-squares method		
a	9.753 (2) \AA	11.017 (3) \AA
b	11.116 (4)	9.386 (2)
${ }^{c}$	$9 \cdot 202$ (2)	$16 \cdot 222$ (2)
α	113.12 (2) ${ }^{\circ}$	
β	103.23 (2)	$107.8(1)^{\circ}$
γ	102.07 (2)	
V	$841.8 \AA^{3}$	$1602 \cdot 7 \AA^{3}$
D_{x}	$1.280 \mathrm{~g} \mathrm{~cm}^{-3}$	$1.344 \mathrm{~g} \mathrm{~cm}^{-3}$
μ	$0.86 \mathrm{~cm}^{-1}$	$0.90 \mathrm{~cm}^{-1}$
Number of Bragg angles used in the refinement	$43\left(23<2 \theta<26^{\circ}\right)$	$38\left(11<2 \theta<22^{\circ}\right)$

Table 1 (cont.)
(b) Details of intensity measurements

Data collected at $-40^{\circ} \mathrm{C}$ on a Syntex $P 2_{1}$ diffractometer		
Clystal dimensions	Ellipsoidal	$0.15 \times 0.22 \times 0.23 \mathrm{~mm}$
	$0.21 \times 0.31 \mathrm{~mm}$	$(001),(1 T 0),(110)$
Reflections measured	3853	2086
2θ range	$4-55^{\circ}$	$4-45^{\circ}$

2θ range
Mo $K \alpha$, graphite monochromator
Radiation ω-scan technique (P counts accumulated) $\pm 0.5^{\circ}$ from $K \alpha$ peak
Scan range
Scan rate
Background
Variable, $1 \cdot 0-5 \cdot 0^{\circ} \mathrm{min}^{-1}$ (defined as S)
Measured with ω set at $\pm 1 \cdot 0^{\circ}$ from the $K \alpha$ peak, time of background measurements = scan time (B_{1} and B_{2} counts accumulated)
Check reflections Four reflections measured after every 96 reflections; only statistical variations noted

$$
S\left(P-B_{1}-B_{2}\right)
$$

$\sigma^{2}(I)$
Corrections made

$$
S^{2}\left(P+B_{1}+B_{2}\right)+(0.02 I)^{2}
$$

Lorentz and polarization, no absorption
(c) Details of structure refinements

Full-matrix least-squares refinement of all positional coordinates and thermal parameters (anisotropic for non-hydrogen atoms; isotropic for hydrogen atoms)

Reflections refined, $I>2 \sigma(I)$
Variables
$R=\sum\left|F_{o}\right|-\left|F_{c}\right| / \sum\left|F_{o}\right|$
$R_{w}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}$
w
Largest parameter shift in the final cycle
Largest peak in the final difference density map

2959		1379
290		290
0.040		0.048
0.039		0.038
	$1 / \sigma^{2}\left(F_{o}\right)$	
0.01σ		0.14σ

cooled to $-40^{\circ} \mathrm{C}$. Table 1 summarizes the experimental details with regard to crystal data, intensity measurements and structure refinements.

Both structures were solved by direct methods

Table 2. Atomic coordinates for the non-hydrogen atoms of 2,4-diphenyl-2,3-benzodiazocin-1($2 H$)-one, compound I , with estimated standard deviations in parentheses

	x	y	z
C(1)	$0 \cdot 2411$ (2)	$0 \cdot 5341$ (1)	$0 \cdot 1141$ (2)
N (2)	$0 \cdot 2374$ (1)	$0 \cdot 5175$ (1)	$0 \cdot 2532$ (1)
$\mathrm{N}(3)$	$0 \cdot 1777$ (1)	$0 \cdot 3784$ (1)	$0 \cdot 2294$ (1)
C(4)	$0 \cdot 2739$ (1)	$0 \cdot 3153$ (1)	$0 \cdot 2346$ (2)
C(5)	$0 \cdot 4314$ (2)	$0 \cdot 3713$ (1)	$0 \cdot 2514$ (2)
C(6)	$0 \cdot 4684$ (2)	$0 \cdot 3885$ (1)	$0 \cdot 1293$ (2)
C(7)	0.3573 (1)	$0 \cdot 3579$ (1)	-0.0307 (2)
C(8)	$0 \cdot 3669$ (2)	$0 \cdot 2696$ (2)	-0.1829 (2)
C(9)	$0 \cdot 2611$ (2)	$0 \cdot 2322$ (2)	-0.3348 (2)
C(10)	$0 \cdot 1449$ (2)	$0 \cdot 2854$ (2)	-0.3391 (2)
C(11)	$0 \cdot 1379$ (2)	$0 \cdot 3786$ (2)	-0.1913 (2)
C(12)	$0 \cdot 2421$ (2)	$0 \cdot 4145$ (1)	-0.0364 (2)
$\mathrm{O}(13)$	$0 \cdot 2451$ (1)	$0 \cdot 6423$ (1)	$0 \cdot 1077$ (1)
C(14)	$0 \cdot 2421$ (2)	0.6233 (1)	$0 \cdot 4074$ (2)
C(15)	$0 \cdot 3052$ (2)	0.7633 (2)	0.4545 (2)
C(16)	$0 \cdot 3122$ (2)	0.8624 (2)	$0 \cdot 6075$ (2)
C(17)	$0 \cdot 2603$ (2)	$0 \cdot 8261$ (2)	0.7163 (2)
C(18)	$0 \cdot 1992$ (2)	$0 \cdot 6879$ (2)	$0 \cdot 6710$ (2)
C(19)	$0 \cdot 1893$ (2)	$0 \cdot 5862$ (2)	$0 \cdot 5174$ (2)
C(20)	$0 \cdot 2203$ (1)	$0 \cdot 1734$ (1)	$0 \cdot 2164$ (2)
C(21)	$0 \cdot 0802$ (2)	$0 \cdot 1209$ (1)	$0 \cdot 2232$ (2)
C(22)	$0 \cdot 0318$ (2)	-0.0115 (2)	$0 \cdot 2057$ (2)
C(23)	$0 \cdot 1202$ (2)	-0.0941 (2)	$0 \cdot 1792$ (2)
C(24)	$0 \cdot 2575$ (2)	-0.0445 (2)	$0 \cdot 1705$ (2)
C(25)	$0 \cdot 3083$ (2)	0.0890 (2)	1896 (2)

($M U L T A N$). In each case, the first cycles of full-matrix least-squares refinement were computed with all of the non-hydrogen atoms assigned the scattering factors of carbon. The nitrogen and oxygen atoms were then

Table 3. Atomic coordinates for the non-hydrogen atoms of 3a,8b-dihydro-1,3-diphenylindeno[1,2-c]-pyrazol-4(1H)-one, compound II, with estimated standard deviations in parentheses

	x	y	z
$\mathrm{N}(1)$	$0 \cdot 2467$ (3)	$0 \cdot 1889$ (3)	$0 \cdot 4322$ (2)
N(2)	$0 \cdot 2382$ (3)	$0 \cdot 1019$ (3)	$0 \cdot 4982$ (2)
C(3)	$0 \cdot 1519$ (3)	$0 \cdot 1515$ (3)	$0 \cdot 5308$ (2)
C(4)	0.0919 (4)	0.2866 (4)	$0 \cdot 4878$ (2)
C(5)	$0 \cdot 1184$ (3)	0.4137 (4)	$0 \cdot 5493$ (2)
C(6)	$0 \cdot 2157$ (3)	0.4998 (4)	$0 \cdot 5281$ (2)
C(7)	$0 \cdot 2757$ (4)	$0 \cdot 6213$ (4)	0.5713 (3)
C(8)	$0 \cdot 3631$ (4)	0.6894 (5)	$0 \cdot 5408$ (3)
C(9)	$0 \cdot 3893$ (4)	$0 \cdot 6384$ (5)	$0 \cdot 4679$ (3)
C(10)	$0 \cdot 3289$ (4)	$0 \cdot 5178$ (4)	$0 \cdot 4247$ (3)
C(11)	$0 \cdot 2422$ (3)	0.4490 (4)	$0 \cdot 4562$ (2)
C(12)	$0 \cdot 1649$ (3)	0.3157 (4)	$0 \cdot 4226$ (2)
C(13)	$0 \cdot 3090$ (3)	$0 \cdot 1418$ (4)	$0 \cdot 3744$ (2)
C(14)	$0 \cdot 2990$ (4)	$0 \cdot 2162$ (5)	$0 \cdot 2990$ (2)
C(15)	$0 \cdot 3655$ (4)	$0 \cdot 1697$ (5)	$0 \cdot 2437$ (3)
C(16)	$0 \cdot 4403$ (4)	0.0517 (5)	0.2615 (3)
C(17)	$0 \cdot 4481$ (4)	-0.0240 (5)	0.3359 (3)
C(18)	$0 \cdot 3837$ (4)	0.0200 (4)	$0 \cdot 3925$ (3)
C(19)	$0 \cdot 1188$ (3)	0.0759 (4)	$0 \cdot 6002$ (2)
C(20)	$0 \cdot 1939$ (4)	-0.0342 (4)	$0 \cdot 6442$ (2)
C(21)	$0 \cdot 1621$ (5)	-0.1060 (5)	0.7086 (3)
C(22)	0.0531 (5)	-0.0696 (5)	0.7294 (3)
C(23)	-0.0212 (5)	0.0390 (5)	$0 \cdot 6874$ (3)
C(24)	0.0095 (4)	$0 \cdot 1123$ (4)	$0 \cdot 6221$ (3)
$\mathrm{O}(25)$	0.0664 (2)	$0 \cdot 4389$ (3)	$0 \cdot 6040$ (2)

easily singled out by the low value of their thermal parameters. The positions of the hydrogen atoms were later located in a difference-density Fourier map. The refined positional parameters for the non-hydrogen atoms are listed in Tables 2 and 3 for compounds I and II, respectively.* The computational details can be found elsewhere (Harlow, Loghry, Williams \& Simonsen, 1974).

Discussion

The general conformation of the two molecules can be seen in Figs. 1 and 3, which also give the atom-numbering schemes (each hydrogen atom is numbered in accord with the carbon atom to which it is bonded). In both crystals the molecules exist as discrete units with no intermolecular contacts that are unusually short.

[^0]
Compound I

Because of the conjugation within the amide group (including a resonance form of the type ${ }^{-} \mathrm{O}-\mathrm{C}=\mathrm{N}^{+}$) and the presence of the benzo moiety, it is not surprising that the eight-membered ring assumes the standard 'tub' conformation found for a number of analogous cyclooctatetraene compounds (Bordner, Parker \& Stanford, 1972; and references therein). The tub is however quite distorted, not only in terms of the differing bond distances and angles (Fig. 2) associated with each of the functional groups which make up the ring, but also in its overall geometry as indicated by the irregularity of the torsion angles around the ring (Table 4) and the large deviations of the atoms from the planes calculated for the 'bottom' and 'top' of the tub (Table 5).

Of the four moieties which make up the eightmembered ring, the N-phenylamide group is the most interesting. This group, $\mathrm{O}=\mathrm{C}-\mathrm{N}-\mathrm{Ph}$, shows bond distances and angles which are very similar to those found for acetanilide (Brown, 1966). However, the dihedral angle between the amide and the phenyl planes in the present case is $24 \cdot 1^{\circ}$, as opposed to approximately 38° for acetanilide. The smaller angle in the present case

Table 4. Selected torsion angles for compound I

Given a set of four atoms A, B, C and D, the torsion angle $A B C D$ is defined as the angle between the two planes formed by A, B, C and B, C, D, respectively. When A, B, C and D are projected to a plane perpendicular to the line $B C$, along the direction from B to C, the sign of the torsion angle is defined as positive if the projected D is located within 180° clockwise rotation of A and negative otherwise.

Fig. 1. Stereo drawing of a molecule of 2,4-diphenyl-2,3-benzodiazocin-1 $(2 H)$-one, compound I , with the atom-numbering scheme.

(a)

(b)

Fig. 2. (a) Bond distances and (b) angles for compound I. The average e.s.d. for angles involving non-hydrogen atoms is $0 \cdot 2^{\circ}$; for angles involving a hydrogen atom, 1°.

places the ortho-hydrogen atom, $\mathrm{H}(15)$, only $2.23 \AA$ away from the oxygen atom, $\mathrm{O}(13)$. Such very short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (compared with $2 \cdot 6 \AA$, the com-monly-used sum of the van der Waals radii for hydrogen and oxygen) are becoming more and more prevalent (for example, Goldstein, 1975; Harlow, Simonsen, Pfluger \& Sammes, 1974; and references therein). Whether such contacts can be classified as 'hydrogen

Table 5. Deviations (\AA) of atoms from various mean planes calculated for compound I
The atoms included in the plane calculation are indicated with an asterisk.
(a) 'Bottom of tub' plane (as defined in Fig. 1)

$\mathrm{C}(1)^{*}$	$0.039(2)$	$\mathrm{C}(6)^{*}$	$-0.040(2)$	$\mathrm{C}(7)$	$0.834(2)$
$\mathrm{N}(2)^{*}$	$-0.043(1)$	$\mathrm{N}(3)$	$1.082(1)$	$\mathrm{C}(12)$	$0.975(2)$
$\mathrm{C}(5)^{*}$	$0.044(2)$	$\mathrm{C}(4)$	$1.060(1)$		

(b) 'Top of tub' plane

$\mathrm{N}(3)^{*}$	$-0.028(1)$	$\mathrm{C}(12)^{*}$	$0.026(2)$	$\mathrm{C}(5)$	$-0.896(2)$
$\mathrm{C}(4)^{*}$	$0.027(1)$	$\mathrm{C}(1)$	$-1.004(2)$	$\mathrm{C}(6)$	$-0.901(2)$
$\mathrm{C}(7)^{*}$	$-0.025(2)$	$\mathrm{N}(2)$	$-1.150(2)$		

(c) Plane of the benzo moiety

$\mathrm{C}(7)^{*}$	$-0.020(2)$	$\mathrm{C}(11)^{*}$	$0.018(2)$	$\mathrm{C}(5)$	$-1.002(2)$
$\mathrm{C}(8)^{*}$	$0.020(2)$	$\mathrm{C}(12)^{*}$	$0.002(2)$	$\mathrm{C}(9)$	$-0.078(2)$
$\mathrm{C}(9)^{*}$	$0.000(1)$	$\mathrm{C}(1)$	$0.280(2)$	$\mathrm{O}(13)$	$1.270(1)$
$\mathrm{C}(10)^{*}$	$-0.019(2)$	$\mathrm{N}(2)$	$-0.580(1)$		
(d) Plane of the amide group					
$\mathrm{C}(1)^{*}$	$0.004(2)$	$\mathrm{C}(12)^{*}$	$-0.001(2)$	$\mathrm{N}(3)$	$0.501(1)$
$\mathrm{N}(2)^{*}$	$-0.001(1)$	$\mathrm{O}(13)^{*}$	$-0.001(1)$	$\mathrm{C}(14)$	$-0.052(2)$

(e) Plane of the phenyl group bonded to $\mathrm{N}(2)$

$\mathrm{C}(14)^{*}$	$0.003(2)$	$\mathrm{C}(18)^{*}$	$-0.003(2)$	$\mathrm{N}(3)$	$-0.129(1)$
$\mathrm{C}(15)^{*}$	$-0.006(2)$	$\mathrm{C}(19)^{*}$	$0.001(2)$	$\mathrm{O}(13)$	$0.829(1)$
$\mathrm{C}(16)^{*}$	$0.004(2)$	$\mathrm{C}(1)$	$0.346(2)$		
$\mathrm{C}(17)^{*}$	$0.001(2)$	$\mathrm{N}(2)$	$-0.054(1)$		
(f) Plane of the phenyl group bonded to $\mathrm{C}(4)$					
$\mathrm{C}(20)^{*}$	$-0.003(1)$	$\mathrm{C}(23)^{*}$	$-0.002(2)$	$\mathrm{N}(3)$	$0.242(1)$
$\mathrm{C}(21)^{*}$	$0.005(1)$	$\mathrm{C}(24)^{*}$	$0.004(2)$	$\mathrm{C}(4)$	$0.008(1)$
$\mathrm{C}(22)^{*}$	$-0.003(2)$	$\mathrm{C}(25)^{*}$	$-0.002(2)$	$\mathrm{C}(5)$	$-0.204(1)$

Dihedral angle: $d-e, 24 \cdot 1^{\circ}$.

Fig. 3. Stereo drawing of a molecule of $3 \mathrm{a}, 8 \mathrm{~b}$-dihydro-1,3-diphenylindeno[1,2-c]pyrazol-4(1 H)-one, compound II, with the atom-numbering scheme.
bonds', or whether the van der Waals radii are in need of adjustment, awaits a definitive study.

The bond parameters associated with the phenyl- $\mathrm{C}=$ N - moiety are those expected for such a conjugated system: the $N(3)-C(4)-C(20)-C(21)$ torsion angle is $-11 \cdot 0^{\circ}$ and the $\mathrm{C}=\mathrm{N}$ bond, $1.287 \AA$, shows a bond order somewhat less than two. On the other hand, the $\mathrm{C}=\mathrm{C}$ moiety, with a bond distance of $1 \cdot 326$ (2) \AA, exhibits pure double-bond character. The only unusual aspect of the benzo group arises from the mean-plane calculation for this group; although reasonably planar itself, the two atoms which are bonded to it, $\mathrm{C}(1)$ and C(6), deviate considerably from the plane, $0 \cdot 280$ (2) and -0.078 (2) \AA, respectively.

Compound II

This molecule is characterized by two structural features. The first is the extended π systems of the benzo- $\mathrm{C}=\mathrm{O}$ and the $\mathrm{Ph}-\mathrm{C}=\mathrm{N}-\mathrm{N}-\mathrm{Ph}$ moieties; the latter undoubtedly gives rise to the greenish-yellow color of the crystals. From the torsion angles (Table 6) and the calculated mean planes (Table 7), it is seen that the carbonyl group is only slightly out of the plane of the benzo moiety. The $\mathrm{Ph}-\mathrm{C}=\mathrm{N}-\mathrm{N}-\mathrm{Ph}$ moiety, while not perfectly planar throughout, has no torsion angles differing from 0 or 180° by more than 14°; both phenyl groups have dihedral angles slightly greater than 13° with respect to the plane of the five-membered heterocyclic ring. The overall conformation of the moiety is

Table 6. Selected torsion angles for compound II

| $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $-1 \cdot 0^{\circ}$ | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$ | $6 \cdot 1^{\circ}$ |
| :--- | ---: | :--- | ---: | ---: |
| $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(19)$ | $177 \cdot 3$ | $\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(13)$ | $162 \cdot 6$ |
| $\mathrm{~N}(1)-\mathrm{C}(12)-\mathrm{C}(4)-\mathrm{C}(3)$ | $4 \cdot 7$ | $\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(6)$ | $-3 \cdot 2$ |
| $\mathrm{~N}(1)-\mathrm{C}(12)-\mathrm{C}(4)-\mathrm{C}(5)$ | $122 \cdot 9$ | $\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$ | $176 \cdot 7$ |
| $\mathrm{~N}(1)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(6)$ | $-113 \cdot 0$ | $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(19)$ | $65 \cdot 7$ |
| $\mathrm{~N}(1)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$ | $66 \cdot 9$ | $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(11)$ | $6 \cdot 6$ |
| $\mathrm{~N}(2)-\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(4)$ | $-5 \cdot 8$ | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $-178 \cdot 8$ |
| $\mathrm{~N}(2)-\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(11)$ | $105 \cdot 5$ | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$ | $178 \cdot 3$ |
| $\mathrm{~N}(2(2)-\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{C}(14)$ | $168 \cdot 2$ | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)$ | $-1 \cdot 9$ |
| $\mathrm{~N}(2)--\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{C}(18)$ | $-12 \cdot 6$ | $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(12)$ | $-7 \cdot 8$ |
| $\mathrm{~N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $-116 \cdot 1$ | $\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$ | $0 \cdot 6$ |
| $\mathrm{~N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(12)$ | $-2 \cdot 6$ | $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(25)$ | $5 \cdot 8$ |
| $\mathrm{~N}(2)-\mathrm{C}(3)-\mathrm{C}(19)-\mathrm{C}(20)$ | $12 \cdot 5$ | $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$ | $-0 \cdot 3$ |
| $\mathrm{~N}(2)-\mathrm{C}(3)-\mathrm{C}(19)-\mathrm{C}(24)$ | $-166 \cdot 4$ | $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)$ | $179 \cdot 6$ |
| $\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(12)$ | $4 \cdot 5$ | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $-179 \cdot 2$ |
| $\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(13)$ | $-164 \cdot 8$ | $\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(25)$ | $-172 \cdot 6$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $103 \cdot 9$ | $\mathrm{C}(111)-\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(13)$ | $-86 \cdot 1$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(25)$ | $-77 \cdot 3$ | $\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{C}(14)$ | $0 \cdot 5$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{C}(11)$ | $-111 \cdot 7$ | $\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{C}(18)$ | $179 \cdot 7$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(19)-\mathrm{C}(20)$ | $-169 \cdot 5$ | $\mathrm{C}(12)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(19)$ | $179 \cdot 2$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(19)-\mathrm{C}(24)$ | $11 \cdot 6$ | $\mathrm{C}(12)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(25)$ | $171 \cdot 0$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | $175 \cdot 5$ | | |

Fig. 4. (a) Bond distances and (b) angles for compound II. The average e.s.d. for angles involving non-hydrogen atoms is $0 \cdot 4^{\circ}$; for angles involving a hydrogen atom, 2°.
perhaps best viewed in Fig. 3. The bond distances for $\mathrm{C}(13)-\mathrm{N}(1), \mathrm{N}(1)-\mathrm{N}(2), \mathrm{N}(2)-\mathrm{C}(3)$, and $\mathrm{C}(3)-\mathrm{C}(19)$ (Fig. 4) are all indicative of bond orders between one and two.

Table 7. Deviations (\AA) of atoms from various mean planes calculated for compound II
The atoms included in the plane calculation are indicated with an asterisk.
(a) Plane of the five-membered ring containing two nitrogen and three carbon atoms

$\mathrm{N}(1)^{*}$	$0.031(3)$	$\mathrm{C}(4)^{*}$	$0.024(4)$	$\mathrm{C}(11)$	$-1.397(4)$
$\mathrm{N}(2)^{*}$	$-0.015(3)$	$\mathrm{C}(12)^{*}$	$-0.032(4)$	$\mathrm{C}(13)$	$0.349(4)$
$\mathrm{C}(3)^{*}$	$-0.008(3)$	$\mathrm{C}(5)$	$-1.232(4)$	$\mathrm{C}(19)$	$0.008(4)$

(b) Plane of the five-membered ring, all carbon atoms

$\mathrm{C}(4)^{*}$	$-0.046(4)$	$\mathrm{C}(12)^{*}$	$0.032(4)$	$\mathrm{C}(8)$	$-0.104(5)$
$\mathrm{C}(5)^{*}$	$0.043(4)$	$\mathrm{N}(1)$	$-1.213(3)$	$\mathrm{C}(9)$	$-0.079(5)$
$\mathrm{C}(6)^{*}$	$-0.024(4)$	$\mathrm{C}(3)$	$-1.400(3)$	$\mathrm{C}(10)$	$-0.027(4)$
$\mathrm{C}(11)^{*}$	$-0.006(4)$	$\mathrm{C}(7)$	$-0.068(4)$	$\mathrm{O}(25)$	$0.170(3)$

(c) Plane of the benzo moiety

$\mathrm{C}(6)^{*}$	$-0.001(4)$	$\mathrm{C}(10)^{*}$	$0.004(4)$	$\mathrm{C}(12)$	$-0.018(4)$
$\mathrm{C}(7)^{*}$	$0.004(4)$	$\mathrm{C}(11)^{*}$	$-0.003(4)$	$\mathrm{O}(25)$	$0.166(3)$

$\mathrm{C}(7)^{*}$	$0.004(4)$	$\mathrm{C}(11)^{*}$	$-0.003(4)$	$\mathrm{O}(25)$	$0.166(3)$
$\mathrm{C}(8)^{*}$	$-0.004(5)$	$\mathrm{C}(4)$	$-0.106(4)$		

$\begin{array}{llll}\mathrm{C}(9)^{*} & 0.000(5) & \mathrm{C}(5) & 0.031 \text { (4) }\end{array}$
(d) Plane of the phenyl group bonded to $\mathrm{N}(1)$

$\mathrm{C}(13)^{*}$	$-0.008(4)$	$\mathrm{C}(16)^{*}$	$-0.008(5)$	$\mathrm{N}(1)$	$-0.048(3)$
$\mathrm{C}(14)^{*}$	$0.006(4)$	$\mathrm{C}(17)^{*}$	$0.006(4)$	$\mathrm{N}(2)$	$0.182(3)$
$\mathrm{C}(15)^{*}$	$0.002(4)$	$\mathrm{C}(18)^{*}$	$0.002(4)$	$\mathrm{C}(12)$	$-0.069(4)$

(e) Plane of the phenyl group bonded to $\mathrm{C}(3)$
$\mathrm{C}(19)^{*} \quad 0.000(3) \quad \mathrm{C}(22)^{*} \quad 0.006(5) \quad \mathrm{N}(2) \quad 0.282(3)$
$\mathrm{C}(20)^{*} \quad 0.001(4) \quad \mathrm{C}(23)^{*}-0.005(5) \quad \mathrm{C}(3) \quad 0.021$ (3)
$\mathrm{C}(21)^{*}-0.004$ (4) $\quad \mathrm{C}(24)^{*} \quad 0.002$ (4) $\quad \mathrm{C}(4) \quad-0.199$ (4)
Dihedral angles: $a-b, 115 \cdot 5 ; a-d, 13 \cdot 3 ; a-e, 13 \cdot 0 ; b-c, 2 \cdot 0^{\circ}$.

The second feature is the nature of the two fused (cis) five-membered ring systems. Both rings are nearly planar (Table 7) but each has assumed a slight amount of 'envelope' conformation: for the heterocyclic ring, atom $\mathrm{C}(12)$ is the flap of the envelope; for the ring containing all carbon atoms, it is atom $C(4)$. If the two rings are treated as planes, one finds that the dihedral angle between the two is $115 \cdot 5^{\circ}$. However, the torsion angles for $N(1)-C(12)-C(4)-C(5)$ and $C(3)-C(4)-C(12)$ $-\mathrm{C}(11)$ are 122.9 and $-111 \cdot 7^{\circ}$, respectively, and, in conjunction with the torsion angles associated with each individual ring, more clearly indicate the geometry about the two bridgehead atoms.

The authors would like to thank the Robert A. Welch Foundation for support of this work (Grant No. F-017) and C. Duncan and M. Figueroa for their technical assistance.

References

Bordner, J., Parker, R. G. \& Stanford, R. H. Jr (1972). Acta Cryst. B28, 1069-1075.
Brown, C. J. (1966). Acta Cryst. 21, 442-445.
Dennis, N., Katritzky, A. R., Lunt, E., Ramaiah, M., Harlow, R. L. \& Simonsen, S. H. (1976). Tetrahedron Lett. To be published.
Goldstein, P. (1975). Acta Cryst. B31, 2086-2097.
Harlow, R. L., Loghry, R. A., Williams, H. J. \& Simonsen, S. H. (1975). Acta Cryst. B31, 1344-1350.
Harlow, R. L., Simonsen, S. H., Pfluger, C. E. \& Sammes, M. P. (1974). Acta Cryst. B30, 2264-2267.

Katritzky, A. R. (1975). Private communication.

Acta Cryst. (1976). B32, 2319

The Crystal and Molecular Structure of Rubidium Tetrathiocyanatobismuthate(III)

By Z. Galdecki, M. L. GŁówka and B. GolińSki
Institute of General Chemistry, Technical University, 90-924 Lódź, Poland

(Received 17 October 1975; accepted 3 December 1975)

Abstract

The crystal structure of $\mathrm{Rb}\left[\mathrm{Bi}(\mathrm{SCN})_{4}\right]$ has been determined by inspection of Patterson two-dimensional ($h 0 l$) and ($h k 0$) syntheses. Refinement was carried out by the full-matrix least-squares method, including anisotropic thermal parameters, to a final R of 0.076 . The refinement was based on three-dimensional intensities of 648 reflexions obtained with $\mathrm{Cu} K \alpha$ radiation and measured using a non-integrating Zeiss photometer. The space group is $P 2_{1} 2_{1} 2$ with $a=11 \cdot 24, b=7 \cdot 65, c=6 \cdot 52 \AA$ and $Z=2$. Each Bi atom is surrounded by four S atoms which form a trigonal bipyramid with bismuth at the centre. The fifth corner is occupied by the lone pair of the central atom. There are two types of SCN groups and these are slightly bent $\left[\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)=165.5^{\circ}\right.$ and $\left.\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(2)=173.7^{\circ}\right]$. The bismuth-sulphur distances are 2.70 for $\mathrm{S}(1)$ and $2.87 \AA$ for $\mathrm{S}(2)$. The $\mathrm{Bi}-\mathrm{N}(2)$ distance ($2.74 \AA$) corresponds to the sum of the ionic Bi radius and the van der Waals N radius, which suggests a weak interaction.

Introduction

The crystal structure of rubidium tetrathiocyanatobismuthate(III) has been determined as part of the programme of study of the structures of complex compounds with cations of Group V. We were par-
ticularly interested in the coordination of bismuth, in the structure of the SCN group and in the stereochemical influence of the lone pair of the Bi atom. In addition, the problems of the crystal chemistry of complexes of bismuth(III) have not so far been thoroughly examined.

[^0]: * Lists of structure factors, final positional parameters for the hydrogen atoms and thermal parameters for all atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31664 (33 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

